Quantum Mechanics [

Week 4 (Solutions)

Spring Semester 2025

1 Finite Hamiltonian

We consider a 3-state system, described by the following Hamiltonian:

Ey, 0 0 . 010
0 0 Ey V2 010

(a) Calculate the eigenvalues of H and the eigenstates |a), |b), |¢), corresponding to the
ground state, the first, and the second excited states. Express the result in terms
of the basis vectors:

1 0 0
H=({0f, [22=(1), B)={0 (1.2)
0 0 1
Solving the characteristic equation, we find the eigenvalues Fg—e; FEy; FEp+e,

with corresponding normalized eigenvectors:

o (1) VIR )
1/2 2
1/v2
_1/\/5 V2
o (1) Z = ve s
1/2 2

(b) Verify that the Hamiltonian H commutes with the operator:

I = 1. (1.3)

|
Il
— o o
oo
oo
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Discuss the relevance of this fact in relation to Question (a).

By computing the commutator, we verify that [H,II] = 0. The eigenvalues of II
are £1. Since the eigenvalues of H are non-degenerate, they are automatically
eigenstates of II. It is immediately verified that |a) and |c) are “even” eigenstates
with eigenvalue 41, while |b) is an “odd” eigenstate with eigenvalue —1.

(c) Express the states |1), |2), |3) in terms of the eigenstates of H.

By inverting the relations given above, we obtain:

@) + v/2[b) + |c) |a) — V2[b) +|e)
2 2 '

_ o =19 _

(d) The system is initially at time ¢t = 0 in state [1), i.e., [¢/(0)) = |1). Determine the
state at time ¢, [¢(t)), in terms of the states |1), |2), |3). Compute the probability
Py(t) of being in state 2 at time ¢ and plot its evolution as a function of time.

1) =

Using the time evolution operator U = exp{—iHt/h} and the initial state in the
energy eigenbasis (see previous Question),

b)) = U@ 1) = e‘“”/h<‘a> + V2 + ‘C>) , (1.4)

we find:

2

(1)) = o~ tEot/h [|a>eiet/ﬁ +V2|b) + |C>6i€t/ﬁ] _

— e*iEot/h

V2

%(1 + cos(et/h))[1) + v sin(et/h)|2) + %(—1 + cos(et/h))|3>]

(1.5)

The probability of being in state |2) at time ¢ is:

Py(t) = | (2l0(0) [ = £ s’ (g) .
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Figure 1: The probability of being in state |2) as a function of time.

Remark: The model represents in a very simplified way the motion of an electron on a

triatomic cyclic molecule. € is the transition amplitude between localized levels. If € = 0,
the electron has three equivalent equilibrium positions, with energy FEj.

2 Two-Level Quantum System

The Hamiltonian of a two-level quantum system is described by the following operator
(in the appropriate units of measurement):

141
H[1) = [1) + NG 2), (2.1)
1—1
H[2) = 7 1) +12) (2.2)

where [1) and |2) are the normalized eigenvectors of another Hermitian operator A:

A1) = V2|1), (2.3)
Al2) = —V2/2). (2.4)

(a) Find the matrix representation of the Hamiltonian on the basis of the eigen-kets
(eigenvectors) of the operator A, i.e., the matrix elements

Hy; = (i|H]j), withi,j=12. (2.5)

Considering the matrix elements H;; obtained by the inner products (i|H|j), the
Hamiltonian matrix H is: }
1 1=
H = 1+4 \{i ) (26)
Ly
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(b)

In our calculations, we have used the orthonormality condition for the eigenvectors
of the operator A.

Find the eigenvalues and eigenvectors of the Hamiltonian.

The eigenvalues are found by solving the characteristic equation obtained from:
1-E &2
P(E)=det( 1. ﬁE =0. (2.7)
L _
We find P(E) = (1 — E)?> — 1 =0, so the two eigenvalues are F; = (0 and Ey = 2.

The corresponding eigenvectors are:

1 141 1 1+
E)) = —|1) — 2 Ey) =—|1 2). 2.8
) = —=l) =12, 1B = = |1) + —12) (2
At time t = 0, a measurement of the observable associated with the operator A is

performed. The result of this measurement is —v/2.

()

Immediately afterward, a measurement of the energy is performed. What is the
probability that this energy measurement yields a value £ = 07

We express the eigenvectors of the operator A in the eigenbasis of the Hamiltonian,

1.e.
1 1—1

ﬂ(‘E2>+‘E1>)a 2) = 5

Right after the measurement at time ¢ = 0, we find |¥) = |2). The probability of
measuring F; = 0 is determined by the Born rule. Using, the expansion of the state
|2) in the basis {|E1) , |Es)}, we find

1) (1E2) = [Ex))- (2.9)

1—q|?

2

_ % (2.10)

P(E,) = ’

How does this probability change if, instead of measuring the energy at time ¢t = 0,
we measure it at a time 7" > 07

We first evolve the system in time by acting with the time evolution operator on
the initial state:

0(0) = e ) = L (e By — |ByY) (211)
Thus, )
1—1 1
P(E,) = ‘ 5| =3 (2.12)

and it does not depend on time.
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(e) Now imagine that no energy measurement is performed. At what time ¢t > 0 will
the system be in the physical state described by [2)7

In Question (d), we found that

V(D) = 15 (B — |By) (213

so |1(t)) = €'?|2), where ¢ is an arbitrary global phase. This condition is satisfied
if
e 2 — 1, (2.14)

thus for t =nwh forn=1,2,---

3 Perturbing a Two-Level System

In this exercise we consider the simplest possible (non-trivial) system, namely a two-
level system. This is a system that is described by wave functions belonging to Cy. The
operators are therefore, according to the idea of Heisenberg’s matrix mechanics, described
by 2 x 2 matrices. In particular, one can always choose a basis such that the Hamiltonian

is given by:
~ wp; 0
Hy=h ( 01 w2) : (3.1)

Then, we introduce a perturbation:

(Wi Wi
W=
<W21 W22>

The new Hamiltonian is then given by H=Hy+W.

a) Write down the eigenenergies E(O), EY and orthonormal eigenstates (0) , ()
1 B2 1 2
of the unperturbed Hamiltonian H,.

The Hamiltonian HO is diagonal and thus E = fuw; and E = hwy. It is expressed
in the basis of its eigenvectors. These are:

60 =(g). 1= (0)

(b) What conditions must be met by the quantities W;; for H to describe a Hamiltonian?

The matrix W represents a physical Hamiltonian if it satisfies the condition Ht=H
and consequently W1t = W. On the level of matrix elements this equation reads
Wi; = W This implies the following constraint on the matrix W
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2 Wi W12€ix
W= (lee—ix W > (20)

where Wiy, Wig, Was and x € R.
(¢) Find the eigenvalues E; , of H.

The eigenvalues of H are given by

1 1
Eiy = §(hw1 + Wit + hwy + Wag) £ 5\/(h¢01 + Wi1 — hwy — Wae)? + 4|Wia)2.

We now focus on a specific case

W = wo, = (w% wgz) . (3.2)

where w € R. This corresponds to a perturbation which "mixes" or couples the
eigenstates of the Hamiltonian.

To simplify the notation, we further introduce the detuning parameter § = h(wy — wy)
such that the unperturbed Hamiltonian takes the form:

m= (4 ) @

2
by making a suitable choice for hAws.

(d) Find the eigenvalues of the total Hamiltonian H.

The eigenvalues are obtained by setting Wi; = Wy = 0 and Wiy = Wo = w/2 in
the eigenvalues we obtained above. We find:

1
ELQ = :|:§ V 02 —+ w? . (34)

We can verify that when w = 0, we obtain the unperturbed energies E 5 = j:%é )

(e) Find the eigenstates of the new Hamiltonian.

Diagonalizing the total matrix we find:

cos © —sin© w
o0 = (Seg) ten= (). tmze~-%. (3.5)
The coefficients are given by
cos© = _ sin® = a

V1+a? V14 ao?
where o = (V02 +w? + §)/w. For the derivation of tan20 = —%, the following

trigonometric identity was used:

2tan ©

tan20 = —————.
an 1 —tan’©

These states are expressed in the energy basis of the unperturbed Hamiltonian, thus
the new eigenstates are a linear combination of the original states.
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(f) Plot the energies E. as a function of the detuning 0. Plot also the unperturbed
energies EfOQ) = +0/2. What happens to the eigenstates for low and high detuning?

The finite, non-zero value of the perturbation strength w introduces a gap in the
energy spectrum at zero detuning. Notice that for large detunings (either positive
or negative), the new energies tend to the original ones.

1.5 A

1.0 A

0.5 -

0.0 -

E/w

—-0.5 -

—1.0 -

—— Perturbed Energies

-1.5 1 —— Unperturbed Energies

T T T T T T T
-3 -2 -1 0 1 2 3

&/w

Figure 2: The energy spectrum for perturbed and unperturbed energies.

Remark: This system appears in many physical scenarios, for instance in light-matter
interaction, in cavity electrodynamics and in mesoscopic physics.

4 A Particle in a Box

A box containing a particle is divided into a right and a left compartment by a thin
partition. If the particle is known to be on the right (left) side with certainty, the state is
represented by the position eigenket |R) (|L)), where we have neglected spatial variations
within each half of the box. The most general state vector can then be written as

@) = [R)(R|e) + [L)(L|a),

where (R|a) and (L|a) can be regarded as "wave functions." The particle can tunnel
through the partition; this tunneling effect is characterized by the Hamiltonian

H = A([L){(R| + [R)(L)),
where A is a real number with the dimension of energy.
(a) Find the normalized energy eigenkets. ~What are the corresponding energy
eigenvalues?
The energy eigenvalues are F. = +A with normalized eigenstates
1

|E:|:> = \/i

(IR) £ |L)). (4.1)
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(b)

In the Schrédinger picture the base kets |R) and |L) are fixed, and the state vector
moves with time. Suppose the system is represented by |a) as given above at t = 0.
Find the state vector |a,ty = 0;t) for t > 0 by applying the appropriate time-
evolution operator to |a).

We first express the original kets {|R),|L)} in the energy eigenbasis, |R) = (|E+) +
|E_))/v2and |L) = (|E.)—|E_))/v/2. Then, we apply the time-evolution operator
on the state |a) and find (with w = A/h):
|, ) = e 1Mt = 0)
= e MM R)(Rla) + e MM L)(L]a)

1 —iwt wt 1 —iwt iwt
= 75 [ + B (Rla) + = [ EL) — eEL)] (Lfa). (42)

Then, we may express this state in the original basis {|L) , |R)}:

la, t) = [coswt (R|a) — isinwt (L|a>] |R) + [coswt (L|a) — isinwt (R[a)] |L) .
(4.3)

Suppose at t = 0 the particle is on the right side with certainty. What is the
probability for observing the particle on the left side as a function of time?

The initial condition means that (R|a) = 1 and (L]a) = 0, so we calculate
| (L|av, t) |* = sin® wt. (4.4)

Write down the coupled Schrédinger equations for the wave functions (R|a, tg = 0;t)
and (L|a,tg = 0;t). Show that the solutions to the coupled Schrodinger equations
are just what you expect from Question (b).

We use the simplified notation |a,t) = |a, tg = 0;1), and express our state as:
a,t) = (R|a,t) |R) + (L], ) [L) - (4.5)

We may use for simplicity the notation cg(t) = (R|a,t) and ¢ (t) = (L|a, t).

We use the Schrodinger equation,

ihdy |o, t) = H |, t),  H = A(|LY(R| + |R)(L|). (4.6)

Using the general time-evolved state in the Schrodinger equation, and equating the
coeflicients of the state kets |L) ,|R), we find:

ihdtCR = ACL, ?;hdtCL = ACR 5 -

Solving the system of coupled ordinary differential equations, we find the following
solution:
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cr = —if sinwt + +if coswt, c¢p = [y coswt + [y sinwt (4.7)

where the constants 1, 8y are determined from the initial conditions. Comparing
this result to that of Question (b), we find agreement when 8, = (L|a) and 5 =
—i(R|a).

Suppose the printer made an error and wrote H as
H = A|L)(R|.

Show that the probability conservation as a function of time is violated. Suppose
that the initial state is |R).

We will evolve this state using the time evolution operator
H
[U(t)) = UL(0)) = exp| —i—t | [¥(0)) (4.8)

Notice that for this Hamiltonian, we have H? = 0. Thus, we can expand

A

H
U (t)) = [1 . z%t] T(0)) . (4.9)
The initial state is taken to be that of |R), hence we find:
A
|W(t)) =|R) — zﬁt |L) . (4.10)
We consider the probability density as a function of time,

(U(B|W(t) =1+ ?—jﬂ. (4.11)

Probability is no longer conserved in time. At time ¢t = 0, the probability is indeed
unity, but then for ¢t > 0, it grows with time.
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