

Quantum Mechanics I

Week 4 (Solutions)

Spring Semester 2025

1 Finite Hamiltonian

We consider a 3-state system, described by the following Hamiltonian:

$$H = H_0 + H_1 = \begin{pmatrix} E_0 & 0 & 0 \\ 0 & E_0 & 0 \\ 0 & 0 & E_0 \end{pmatrix} - \frac{\epsilon}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad (1.1)$$

- (a) Calculate the eigenvalues of H and the eigenstates $|a\rangle$, $|b\rangle$, $|c\rangle$, corresponding to the ground state, the first, and the second excited states. Express the result in terms of the basis vectors:

$$|1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad |2\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad |3\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \quad (1.2)$$

Solving the characteristic equation, we find the eigenvalues $E_0 - \epsilon$; E_0 ; $E_0 + \epsilon$, with corresponding normalized eigenvectors:

$$|a\rangle = \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = \frac{|1\rangle + \sqrt{2}|2\rangle + |3\rangle}{2},$$

$$|b\rangle = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix} = \frac{|1\rangle - |3\rangle}{\sqrt{2}},$$

$$|c\rangle = \begin{pmatrix} 1/2 \\ -1/\sqrt{2} \\ 1/2 \end{pmatrix} = \frac{|1\rangle - \sqrt{2}|2\rangle + |3\rangle}{2}.$$

- (b) Verify that the Hamiltonian H commutes with the operator:

$$\Pi = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \Pi^2 = 1. \quad (1.3)$$

Discuss the relevance of this fact in relation to Question (a).

By computing the commutator, we verify that $[H, \Pi] = 0$. The eigenvalues of Π are ± 1 . Since the eigenvalues of H are non-degenerate, they are automatically eigenstates of Π . It is immediately verified that $|a\rangle$ and $|c\rangle$ are “even” eigenstates with eigenvalue $+1$, while $|b\rangle$ is an “odd” eigenstate with eigenvalue -1 .

- (c) Express the states $|1\rangle$, $|2\rangle$, $|3\rangle$ in terms of the eigenstates of H .

By inverting the relations given above, we obtain:

$$|1\rangle = \frac{|a\rangle + \sqrt{2}|b\rangle + |c\rangle}{2}, \quad |2\rangle = \frac{|a\rangle - |c\rangle}{\sqrt{2}}, \quad |3\rangle = \frac{|a\rangle - \sqrt{2}|b\rangle + |c\rangle}{2}.$$

- (d) The system is initially at time $t = 0$ in state $|1\rangle$, i.e., $|\psi(0)\rangle = |1\rangle$. Determine the state at time t , $|\psi(t)\rangle$, in terms of the states $|1\rangle$, $|2\rangle$, $|3\rangle$. Compute the probability $P_2(t)$ of being in state 2 at time t and plot its evolution as a function of time.

Using the time evolution operator $U = \exp\{-iHt/\hbar\}$ and the initial state in the energy eigenbasis (see previous Question),

$$|\psi(t)\rangle = U(t)|1\rangle = e^{-iHt/\hbar} \left(\frac{|a\rangle + \sqrt{2}|b\rangle + |c\rangle}{2} \right), \quad (1.4)$$

we find:

$$\begin{aligned} |\psi(t)\rangle &= e^{-iE_0t/\hbar} \left[\frac{|a\rangle e^{i\epsilon t/\hbar} + \sqrt{2}|b\rangle + |c\rangle e^{-i\epsilon t/\hbar}}{2} \right] = \\ &= e^{-iE_0t/\hbar} \left[\frac{1}{2}(1 + \cos(\epsilon t/\hbar))|1\rangle + \frac{i}{\sqrt{2}} \sin(\epsilon t/\hbar)|2\rangle + \frac{1}{2}(-1 + \cos(\epsilon t/\hbar))|3\rangle \right] \end{aligned} \quad (1.5)$$

The probability of being in state $|2\rangle$ at time t is:

$$P_2(t) = |\langle 2|\psi(t)\rangle|^2 = \frac{1}{2} \sin^2 \left(\frac{\epsilon t}{\hbar} \right).$$

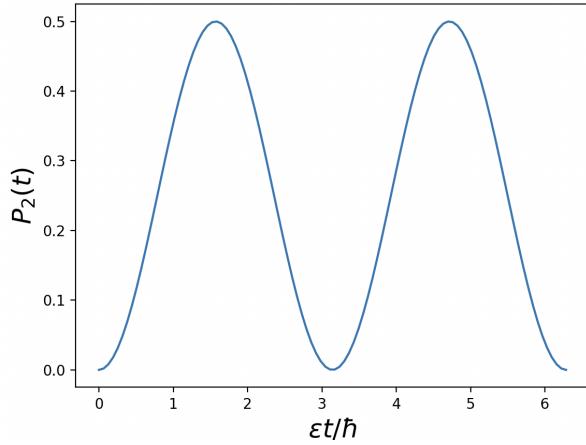


Figure 1: The probability of being in state $|2\rangle$ as a function of time.

Remark: The model represents in a very simplified way the motion of an electron on a triatomic cyclic molecule. ϵ is the transition amplitude between localized levels. If $\epsilon = 0$, the electron has three equivalent equilibrium positions, with energy E_0 .

2 Two-Level Quantum System

The Hamiltonian of a two-level quantum system is described by the following operator (in the appropriate units of measurement):

$$H|1\rangle = |1\rangle + \frac{1+i}{\sqrt{2}}|2\rangle, \quad (2.1)$$

$$H|2\rangle = \frac{1-i}{\sqrt{2}}|1\rangle + |2\rangle \quad (2.2)$$

where $|1\rangle$ and $|2\rangle$ are the normalized eigenvectors of another Hermitian operator A :

$$A|1\rangle = \sqrt{2}|1\rangle, \quad (2.3)$$

$$A|2\rangle = -\sqrt{2}|2\rangle. \quad (2.4)$$

- (a) Find the matrix representation of the Hamiltonian on the basis of the eigen-kets (eigenvectors) of the operator A , i.e., the matrix elements

$$H_{ij} = \langle i|H|j\rangle, \quad \text{with } i, j = 1, 2. \quad (2.5)$$

Considering the matrix elements H_{ij} obtained by the inner products $\langle i|H|j\rangle$, the Hamiltonian matrix H is:

$$H = \begin{pmatrix} 1 & \frac{1-i}{\sqrt{2}} \\ \frac{1+i}{\sqrt{2}} & 1 \end{pmatrix}, \quad (2.6)$$

In our calculations, we have used the orthonormality condition for the eigenvectors of the operator \hat{A} .

(b) **Find the eigenvalues and eigenvectors of the Hamiltonian.**

The eigenvalues are found by solving the characteristic equation obtained from:

$$P(E) = \det \begin{pmatrix} 1 - E & \frac{1-i}{\sqrt{2}} \\ \frac{1+i}{\sqrt{2}} & 1 - E \end{pmatrix} = 0. \quad (2.7)$$

We find $P(E) = (1 - E)^2 - 1 = 0$, so the two eigenvalues are $E_1 = 0$ and $E_2 = 2$.

The corresponding eigenvectors are:

$$|E_1\rangle = \frac{1}{\sqrt{2}}|1\rangle - \frac{1+i}{2}|2\rangle, \quad |E_2\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{1+i}{2}|2\rangle. \quad (2.8)$$

At time $t = 0$, a measurement of the observable associated with the operator A is performed. The result of this measurement is $-\sqrt{2}$.

(c) Immediately afterward, a measurement of the energy is performed. What is the probability that this energy measurement yields a value $E = 0$?

We express the eigenvectors of the operator \hat{A} in the eigenbasis of the Hamiltonian, i.e.

$$|1\rangle = \frac{1}{\sqrt{2}}(|E_2\rangle + |E_1\rangle), \quad |2\rangle = \frac{1-i}{2}(|E_2\rangle - |E_1\rangle). \quad (2.9)$$

Right after the measurement at time $t = 0$, we find $|\Psi\rangle = |2\rangle$. The probability of measuring $E_1 = 0$ is determined by the Born rule. Using, the expansion of the state $|2\rangle$ in the basis $\{|E_1\rangle, |E_2\rangle\}$, we find

$$P(E_1) = \left| \frac{1-i}{2} \right|^2 = \frac{1}{2}. \quad (2.10)$$

(d) How does this probability change if, instead of measuring the energy at time $t = 0$, we measure it at a time $T > 0$?

We first evolve the system in time by acting with the time evolution operator on the initial state:

$$|\psi(t)\rangle = e^{-i\hat{H}t/\hbar}|2\rangle = \frac{1-i}{2} (e^{-2it/\hbar}|E_2\rangle - |E_1\rangle) \quad (2.11)$$

Thus,

$$P(E_1) = \left| \frac{1-i}{2} \right|^2 = \frac{1}{2}, \quad (2.12)$$

and it does not depend on time.

- (e) Now imagine that no energy measurement is performed. At what time $t \geq 0$ will the system be in the physical state described by $|2\rangle$?

In Question (d), we found that

$$|\psi(t)\rangle = \frac{1-i}{2} (e^{-2it/\hbar} |E_2\rangle - |E_1\rangle), \quad (2.13)$$

so $|\psi(t)\rangle = e^{i\phi} |2\rangle$, where ϕ is an arbitrary global phase. This condition is satisfied if

$$e^{-2it/\hbar} = 1, \quad (2.14)$$

thus for $t = n\pi\hbar$ for $n = 1, 2, \dots$.

3 Perturbing a Two-Level System

In this exercise we consider the simplest possible (non-trivial) system, namely a two-level system. This is a system that is described by wave functions belonging to \mathbb{C}_2 . The operators are therefore, according to the idea of Heisenberg's matrix mechanics, described by 2×2 matrices. In particular, one can always choose a basis such that the Hamiltonian is given by:

$$\hat{H}_0 = \hbar \begin{pmatrix} \omega_1 & 0 \\ 0 & \omega_2 \end{pmatrix}. \quad (3.1)$$

Then, we introduce a perturbation:

$$\hat{W} = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}$$

The new Hamiltonian is then given by $\hat{H} = \hat{H}_0 + \hat{W}$.

- (a) Write down the eigenenergies $E_1^{(0)}, E_2^{(0)}$ and orthonormal eigenstates $\{|\phi_1^{(0)}\rangle, |\phi_2^{(0)}\rangle\}$ of the unperturbed Hamiltonian \hat{H}_0 .

The Hamiltonian \hat{H}_0 is diagonal and thus $E_1^{(0)} = \hbar\omega_1$ and $E_2^{(0)} = \hbar\omega_2$. It is expressed in the basis of its eigenvectors. These are:

$$|\phi_1^{(0)}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |\phi_2^{(0)}\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

- (b) What conditions must be met by the quantities W_{ij} for \hat{H} to describe a Hamiltonian?

The matrix \hat{W} represents a physical Hamiltonian if it satisfies the condition $\hat{H}^\dagger = \hat{H}$ and consequently $\hat{W}^\dagger = \hat{W}$. On the level of matrix elements this equation reads $W_{ij} = W_{ji}^*$. This implies the following constraint on the matrix \hat{W} :

$$\hat{W} = \begin{pmatrix} W_{11} & W_{12}e^{i\chi} \\ W_{12}e^{-i\chi} & W_{22} \end{pmatrix} \quad (20)$$

where W_{11} , W_{12} , W_{22} and $\chi \in \mathbb{R}$.

(c) Find the eigenvalues $E_{1,2}$ of \hat{H} .

The eigenvalues of \hat{H} are given by

$$E_{1,2} = \frac{1}{2}(\hbar\omega_1 + W_{11} + \hbar\omega_2 + W_{22}) \pm \frac{1}{2}\sqrt{(\hbar\omega_1 + W_{11} - \hbar\omega_2 - W_{22})^2 + 4|W_{12}|^2}.$$

We now focus on a specific case

$$\hat{W}_I = w\sigma_x = \begin{pmatrix} 0 & w/2 \\ w/2 & 0 \end{pmatrix}. \quad (3.2)$$

where $w \in \mathbb{R}$. This corresponds to a perturbation which "mixes" or couples the eigenstates of the Hamiltonian.

To simplify the notation, we further introduce the detuning parameter $\delta = \hbar(\omega_2 - \omega_1)$ such that the unperturbed Hamiltonian takes the form:

$$H_0 = \begin{pmatrix} -\frac{\delta}{2} & 0 \\ 0 & \frac{\delta}{2} \end{pmatrix}, \quad (3.3)$$

by making a suitable choice for $\hbar\omega_1$.

(d) Find the eigenvalues of the total Hamiltonian \hat{H} .

The eigenvalues are obtained by setting $W_{11} = W_{22} = 0$ and $W_{12} = W_{21} = w/2$ in the eigenvalues we obtained above. We find:

$$E_{1,2} = \pm\frac{1}{2}\sqrt{\delta^2 + w^2}. \quad (3.4)$$

We can verify that when $w = 0$, we obtain the unperturbed energies $E_{1,2} = \pm\frac{1}{2}\delta$.

(e) Find the eigenstates of the new Hamiltonian.

Diagonalizing the total matrix we find:

$$|\phi_1\rangle = \begin{pmatrix} \cos\Theta \\ \sin\Theta \end{pmatrix}, \quad |\phi_2\rangle = \begin{pmatrix} -\sin\Theta \\ \cos\Theta \end{pmatrix}, \quad \tan 2\Theta = -\frac{w}{\delta}. \quad (3.5)$$

The coefficients are given by

$$\cos\Theta = \frac{1}{\sqrt{1+\alpha^2}}, \quad \sin\Theta = \frac{\alpha}{\sqrt{1+\alpha^2}}$$

where $\alpha = (\sqrt{\delta^2 + w^2} + \delta)/w$. For the derivation of $\tan 2\Theta = -\frac{w}{\delta}$, the following trigonometric identity was used:

$$\tan 2\Theta = \frac{2\tan\Theta}{1 - \tan^2\Theta}.$$

These states are expressed in the energy basis of the unperturbed Hamiltonian, thus the new eigenstates are a linear combination of the original states.

- (f) Plot the energies E_{\pm} as a function of the detuning δ . Plot also the unperturbed energies $E_{1,2}^{(0)} = \pm\delta/2$. What happens to the eigenstates for low and high detuning?

The finite, non-zero value of the perturbation strength w introduces a gap in the energy spectrum at zero detuning. Notice that for large detunings (either positive or negative), the new energies tend to the original ones.

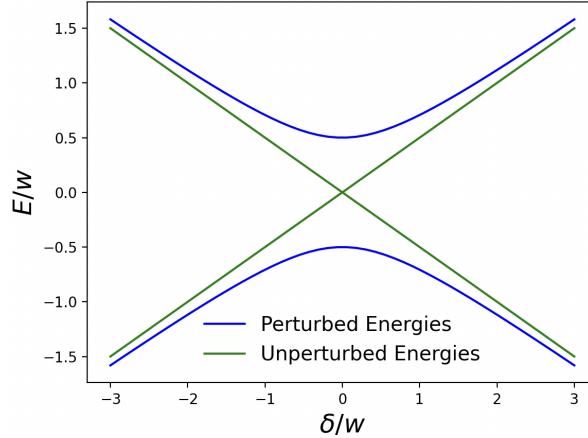


Figure 2: The energy spectrum for perturbed and unperturbed energies.

Remark: This system appears in many physical scenarios, for instance in light-matter interaction, in cavity electrodynamics and in mesoscopic physics.

4 A Particle in a Box

A box containing a particle is divided into a right and a left compartment by a thin partition. If the particle is known to be on the right (left) side with certainty, the state is represented by the position eigenket $|R\rangle$ ($|L\rangle$), where we have neglected spatial variations within each half of the box. The most general state vector can then be written as

$$|\alpha\rangle = |R\rangle\langle R|\alpha\rangle + |L\rangle\langle L|\alpha\rangle,$$

where $\langle R|\alpha\rangle$ and $\langle L|\alpha\rangle$ can be regarded as "wave functions." The particle can tunnel through the partition; this tunneling effect is characterized by the Hamiltonian

$$H = \Delta(|L\rangle\langle R| + |R\rangle\langle L|),$$

where Δ is a real number with the dimension of energy.

- (a) Find the normalized energy eigenkets. What are the corresponding energy eigenvalues?

The energy eigenvalues are $E_{\pm} = \pm\Delta$ with normalized eigenstates

$$|E_{\pm}\rangle = \frac{1}{\sqrt{2}}(|R\rangle \pm |L\rangle). \quad (4.1)$$

- (b) In the Schrödinger picture the base kets $|R\rangle$ and $|L\rangle$ are fixed, and the state vector moves with time. Suppose the system is represented by $|\alpha\rangle$ as given above at $t = 0$. Find the state vector $|\alpha, t_0 = 0; t\rangle$ for $t > 0$ by applying the appropriate time-evolution operator to $|\alpha\rangle$.

We first express the original kets $\{|R\rangle, |L\rangle\}$ in the energy eigenbasis, $|R\rangle = (|E_+\rangle + |E_-\rangle)/\sqrt{2}$ and $|L\rangle = (|E_+\rangle - |E_-\rangle)/\sqrt{2}$. Then, we apply the time-evolution operator on the state $|\alpha\rangle$ and find (with $\omega = \Delta/\hbar$):

$$\begin{aligned} |\alpha, t\rangle &= e^{-iHt/\hbar}|\alpha, t=0\rangle \\ &= e^{-iHt/\hbar}|R\rangle\langle R|\alpha\rangle + e^{-iHt/\hbar}|L\rangle\langle L|\alpha\rangle \\ &= \frac{1}{\sqrt{2}}[e^{-i\omega t}|E_+\rangle + e^{i\omega t}|E_-\rangle]\langle R|\alpha\rangle + \frac{1}{\sqrt{2}}[e^{-i\omega t}|E_+\rangle - e^{i\omega t}|E_-\rangle]\langle L|\alpha\rangle. \end{aligned} \quad (4.2)$$

Then, we may express this state in the original basis $\{|L\rangle, |R\rangle\}$:

$$|\alpha, t\rangle = \left[\cos \omega t \langle R|\alpha\rangle - i \sin \omega t \langle L|\alpha\rangle \right] |R\rangle + \left[\cos \omega t \langle L|\alpha\rangle - i \sin \omega t \langle R|\alpha\rangle \right] |L\rangle. \quad (4.3)$$

- (c) Suppose at $t = 0$ the particle is on the right side with certainty. What is the probability for observing the particle on the left side as a function of time?

The initial condition means that $\langle R|\alpha\rangle = 1$ and $\langle L|\alpha\rangle = 0$, so we calculate

$$|\langle L|\alpha, t\rangle|^2 = \sin^2 \omega t. \quad (4.4)$$

- (d) Write down the coupled Schrödinger equations for the wave functions $\langle R|\alpha, t_0 = 0; t\rangle$ and $\langle L|\alpha, t_0 = 0; t\rangle$. Show that the solutions to the coupled Schrödinger equations are just what you expect from Question (b).

We use the simplified notation $|\alpha, t\rangle \equiv |\alpha, t_0 = 0; t\rangle$, and express our state as:

$$|\alpha, t\rangle = \langle R|\alpha, t\rangle |R\rangle + \langle L|\alpha, t\rangle |L\rangle. \quad (4.5)$$

We may use for simplicity the notation $c_R(t) \equiv \langle R|\alpha, t\rangle$ and $c_L(t) \equiv \langle L|\alpha, t\rangle$.

We use the Schrödinger equation,

$$i\hbar d_t |\alpha, t\rangle = \hat{H} |\alpha, t\rangle, \quad H = \Delta(|L\rangle\langle R| + |R\rangle\langle L|). \quad (4.6)$$

Using the general time-evolved state in the Schrödinger equation, and equating the coefficients of the state kets $|L\rangle, |R\rangle$, we find:

$$i\hbar d_t c_R = \Delta c_L, \quad i\hbar d_t c_L = \Delta c_R.$$

Solving the system of coupled ordinary differential equations, we find the following solution:

$$c_R = -i\beta_1 \sin \omega t + i\beta \cos \omega t, \quad c_L = \beta_1 \cos \omega t + \beta_2 \sin \omega t, \quad (4.7)$$

where the constants β_1, β_2 are determined from the initial conditions. Comparing this result to that of Question (b), we find agreement when $\beta_1 = \langle L|\alpha \rangle$ and $\beta_2 = -i\langle R|\alpha \rangle$.

(e) Suppose the printer made an error and wrote H as

$$H = \Delta |L\rangle\langle R|.$$

Show that the probability conservation as a function of time is violated. Suppose that the initial state is $|R\rangle$.

We will evolve this state using the time evolution operator

$$|\Psi(t)\rangle = U |\Psi(0)\rangle = \exp\left(-i\frac{H}{\hbar}t\right) |\Psi(0)\rangle, \quad (4.8)$$

Notice that for this Hamiltonian, we have $H^2 = 0$. Thus, we can expand

$$|\Psi(t)\rangle = \left[1 - i\frac{\hat{H}}{\hbar}t\right] |\Psi(0)\rangle. \quad (4.9)$$

The initial state is taken to be that of $|R\rangle$, hence we find:

$$|\Psi(t)\rangle = |R\rangle - i\frac{\Delta}{\hbar}t |L\rangle. \quad (4.10)$$

We consider the probability density as a function of time,

$$\langle \Psi(t) | \Psi(t) \rangle = 1 + \frac{\Delta^2}{\hbar^2} t^2. \quad (4.11)$$

Probability is no longer conserved in time. At time $t = 0$, the probability is indeed unity, but then for $t > 0$, it grows with time.